skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang_杨, Lei 雷"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract On 2023 November 23, the two LIGO observatories both detected GW231123, a gravitational-wave signal consistent with the merger of two black holes with masses 13 7 18 + 23 M and 10 1 50 + 22 M (90% credible intervals), at a luminosity distance of 0.7–4.1 Gpc, a redshift of 0.4 0 0.25 + 0.27 , and with a network signal-to-noise ratio of ∼20.7. Both black holes exhibit high spins— 0.9 0 0.19 + 0.10 and 0.8 0 0.52 + 0.20 , respectively. A massive black hole remnant is supported by an independent ringdown analysis. Some properties of GW231123 are subject to large systematic uncertainties, as indicated by differences in the inferred parameters between signal models. The primary black hole lies within or above the theorized mass gap where black holes between 60–130Mshould be rare, due to pair-instability mechanisms, while the secondary spans the gap. The observation of GW231123 therefore suggests the formation of black holes from channels beyond standard stellar collapse and that intermediate-mass black holes of mass ∼200Mform through gravitational-wave-driven mergers. 
    more » « less
    Free, publicly-accessible full text available October 27, 2026
  2. The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses m 1 = 33.6 0.8 + 1.2 M and m 2 = 32.2 1.3 + 0.8 M , and small spins χ 1 , 2 0.26 (90% credibility) and negligible eccentricity e 0.03 . Postmerger data excluding the peak region are consistent with the dominant quadrupolar ( = | m | = 2 ) mode of a Kerr black hole and its first overtone. We constrain the modes’ frequencies to ± 30 % of the Kerr spectrum, providing a test of the remnant’s Kerr nature. We also examine Hawking’s area law, also known as the second law of black hole mechanics, which states that the total area of the black hole event horizons cannot decrease with time. A range of analyses that exclude up to five of the strongest merger cycles confirm that the remnant area is larger than the sum of the initial areas to high credibility. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  3. null (Ed.)